Gestionar cookies
Título Data-driven spatio-temporal estimation of soil moisture and temperature based on Lipschitz interpolation
Autores MANZANO CRESPO, JOSÉ MARÍA, ORIHUELA ESPINA, DIEGO LUIS, PACHECO VIANA, ERID EULOG, PEREIRA MARTÍN, MARIO
Publicación externa No
Medio ISA Trans
Alcance Article
Naturaleza Científica
Cuartil JCR 1
Cuartil SJR 1
Fecha de publicacion 01/01/2025
ISI 001406833300001
DOI 10.1016/j.isatra.2024.11.018
Abstract This study estimates agricultural soil variables using a non-parametric machine learning technique based on Lipschitz interpolation. This method is adapted for the first time to learn spatio-temporal dynamics, accounting for two-dimensional spatial and one temporal coordinate inputs separately. The estimator is validated on real agricultural data, addressing challenges like measurement noise and quantization. The experimental setup, including an edge layer with measurement devices and a cloud layer for data storage and processing, is detailed. Despite its simplicity, the method presents a compelling alternative to Gaussian processes and neural networks.
Palabras clave Spatio-temporal estimation; Lipschitz interpolation; Non-parametric learning; Agriculture soil monitoring; Experimental validation
Miembros de la Universidad Loyola