Título |
THE COMPLEMENTARY POLYNOMIALS AND THE RODRIGUES OPERATOR OF CLASSICAL ORTHOGONAL POLYNOMIALS |
Autores |
COSTAS SANTOS, ROBERTO SANTIAGO, Marcellan Espanol, Francisco |
Publicación externa |
Si |
Medio |
Proc. Am. Math. Soc. |
Alcance |
Article |
Naturaleza |
Científica |
Cuartil JCR |
2 |
Cuartil SJR |
1 |
Impacto JCR |
0.609 |
Impacto SJR |
1.108 |
Web |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84862899688&doi=10.1090%2fS0002-9939-2012-11229-8&partnerID=40&md5=c20f157f115306a86b45e3e2f8b3e1d5 |
Fecha de publicacion |
01/10/2012 |
ISI |
000309487600016 |
Scopus Id |
2-s2.0-84862899688 |
DOI |
10.1090/S0002-9939-2012-11229-8 |
Abstract |
From the Rodrigues representation of polynomial eigenfunctions of a second order linear hypergeometric-type differential (difference or q-difference) operator, complementary polynomials for classical orthogonal polynomials are constructed using a straightforward method. Thus a generating function in a closed form is obtained.\n For the complementary polynomials we present a second order linear hypergeometric-type differential (difference or q-difference) operator, a three-term recursion and Rodrigues formulas which extend the results obtained by H.,I. Weber for the standard derivative operator. |
Palabras clave |
Classical orthogonal polynomials; Rodrigues operator; complementary polynomials; generating formula |
Miembros de la Universidad Loyola |
|