Título |
REPRESENTING FILIFORM LIE ALGEBRAS MINIMALLY AND FAITHFULLY BY STRICTLY UPPER-TRIANGULAR MATRICES |
Autores |
CEBALLOS GONZÁLEZ, MANUEL, Nunez, Juan , Tenorio, Angel F. |
Publicación externa |
Si |
Medio |
J. Algebra. Appl. |
Alcance |
Article |
Naturaleza |
Científica |
Cuartil JCR |
4 |
Cuartil SJR |
3 |
Impacto JCR |
0.373 |
Impacto SJR |
0.588 |
Fecha de publicacion |
01/06/2013 |
ISI |
000316952300014 |
DOI |
10.1142/S0219498812501964 |
Abstract |
In this paper, we compute minimal faithful representations of filiform Lie algebras by means of strictly upper-triangular matrices. To obtain such representations, we use nilpotent Lie algebras g(n), of n x n strictly upper-triangular matrices, because any given (filiform) nilpotent Lie algebra g admits a Lie-algebra isomorphism with a subalgebra of g(n) for some n is an element of N\\{1}. In this sense, we search for the lowest natural integer n such that the Lie algebra g(n) contains the filiform Lie algebra g as a subalgebra. Additionally, we give a representative of each representation. |
Palabras clave |
Filiform Lie algebra; minimal faithful strictly upper-triangular matrix representation; algorithm |
Miembros de la Universidad Loyola |
|