Título |
MATRICES TOTALLY POSITIVE RELATIVE TO A TREE |
Autores |
Johnson, Charles R. , COSTAS SANTOS, ROBERTO SANTIAGO, Tadchiev, Boris |
Publicación externa |
Si |
Medio |
Electron J. Linear Algebra |
Alcance |
Article |
Naturaleza |
Científica |
Cuartil JCR |
2 |
Cuartil SJR |
1 |
Impacto JCR |
0.892 |
Impacto SJR |
0.981 |
Web |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-65749091058&doi=10.13001%2f1081-3810.1306&partnerID=40&md5=04326a2e75f0d955202c715366e91896 |
Fecha de publicacion |
01/04/2009 |
ISI |
000265108300001 |
Scopus Id |
2-s2.0-65749091058 |
DOI |
10.13001/1081-3810.1306 |
Abstract |
It is known that for a totally positive (TP) matrix, the eigenvalues are positive and distinct and the eigenvector associated with the smallest eigenvalue is totally nonzero and has an alternating sign pattern. Here, a certain weakening of the TP hypothesis is shown to yield a similar conclusion. |
Palabras clave |
Totally positive matrices; Sylvester's identity; Graph theory; Spectral theory |
Miembros de la Universidad Loyola |
|