Título |
Algorithm to compute abelian subalgebras and ideals in Malcev algebras |
Autores |
CEBALLOS GONZÁLEZ, MANUEL, Nunez, J. , Tenorio, A. F. |
Publicación externa |
Si |
Medio |
Math Methods Appl Sci |
Alcance |
Article |
Naturaleza |
Científica |
Cuartil JCR |
2 |
Cuartil SJR |
1 |
Impacto JCR |
1.017 |
Impacto SJR |
0.698 |
Fecha de publicacion |
01/11/2016 |
ISI |
000385719500021 |
DOI |
10.1002/mma.3940 |
Abstract |
In this paper, we introduce an algorithmic procedure that computes abelian subalgebras and ideals of a given finite-dimensional Malcev algebra. All the computations are performed by using the non-zero brackets in the law of the algebra as input. Additionally, the algorithm also computes the and invariants of these algebras, and as a supporting output, a list of abelian ideals and subalgebras of maximal dimension is returned too. To implement this algorithm, we have used the symbolic computation package MAPLE 12, performing a brief computational and statistical study for it and its implementation. Copyright (c) 2016 John Wiley & Sons, Ltd. |
Palabras clave |
Malcev algebra; abelian subalgebra; abelian ideal; invariant; invariant; algorithm |
Miembros de la Universidad Loyola |
|