Título |
Abelian Subalgebras and Ideals of Maximal Dimension in Solvable Leibniz Algebras |
Autores |
CEBALLOS GONZÁLEZ, MANUEL, Towers, David A. |
Publicación externa |
No |
Medio |
Mediterr. J. Math. |
Alcance |
Article |
Naturaleza |
Científica |
Cuartil JCR |
1 |
Cuartil SJR |
2 |
Impacto JCR |
1.1 |
Impacto SJR |
0.604 |
Web |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147441990&doi=10.1007%2fs00009-023-02306-4&partnerID=40&md5=83879dd7334281fea2d81a8a39fdf92c |
Fecha de publicacion |
01/04/2023 |
ISI |
000926227500003 |
Scopus Id |
2-s2.0-85147441990 |
DOI |
10.1007/s00009-023-02306-4 |
Abstract |
In this paper, we compare the abelian subalgebras and ideals of maximal dimension for finite-dimensional Leibniz algebras. We study Leibniz algebras containing abelian subalgebras of codimension 1, solvable and supersolvable Leibniz algebras for codimensions 1 and 2, nilpotent Leibniz algebras in case of codimension 2, and we also analyze the case of k-abelian p-filiform Leibniz algebras. Throughout the paper, we also give examples to clarify some results and the need for restrictions on the underlying field. |
Palabras clave |
Leibniz algebra; abelian subalgebra; abelian ideal; solvable; nilpotent |
Miembros de la Universidad Loyola |
|