Title |
Finite-dimensional Leibniz algebras and combinatorial structures |
Authors |
CEBALLOS GONZÁLEZ, MANUEL, Nunez, J. , Tenorio, A. F. |
External publication |
No |
Means |
Commun. Contemp. Math. |
Scope |
Article |
Nature |
Científica |
JCR Quartile |
1 |
SJR Quartile |
1 |
JCR Impact |
1.394 |
Web |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994633258&doi=10.1142%2fS0219199717500043&partnerID=40&md5=d5956a0efa40ae04514362c6f9e6ae1b |
Publication date |
01/02/2018 |
ISI |
000413441800006 |
Scopus Id |
2-s2.0-84994633258 |
DOI |
10.1142/S0219199717500043 |
Abstract |
Given a finite-dimensional Leibniz algebra with certain basis, we show how to associate such algebra with a combinatorial structure of dimension 2. In some particular cases, this structure can be reduced to a digraph or a pseudodigraph. In this paper, we study some theoretical properties about this association and we determine the type of Leibniz algebra associated to each of them. |
Keywords |
Digraph; pseudodigraph; combinatorial structure; Leibniz algebra; Lie algebra |
Universidad Loyola members |
|