Title |
Filiform Lie Algebras with Low Derived Length |
Authors |
Castro-Jiménez F.J. , CEBALLOS GONZÁLEZ, MANUEL, Núñez-Valdés J. |
External publication |
No |
Means |
Mediterr. J. Math. |
Scope |
Article |
Nature |
Científica |
JCR Quartile |
2 |
SJR Quartile |
2 |
JCR Impact |
1.4 |
SJR Impact |
0.696 |
Web |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094201741&doi=10.1007%2fs00009-020-01642-z&partnerID=40&md5=25c8c08ef0f653078080ff8306276213 |
Publication date |
28/10/2020 |
ISI |
000582909900001 |
Scopus Id |
2-s2.0-85094201741 |
DOI |
10.1007/s00009-020-01642-z |
Abstract |
We construct, for any n= 5 , a family of complex filiform Lie algebras with derived length at most 3 and dimension n. We also give examples of n-dimensional filiform Lie algebras with derived length greater than 3. © 2020, Springer Nature Switzerland AG. |
Keywords |
derived length; Filiform Lie algebra; Lie algebra invariants |
Universidad Loyola members |
|