Title Catalytic transformations of biomass-derived acids into advanced biofuels
Authors SERRANO RUIZ, JUAN CARLOS, Pineda, Antonio , Mariana Balu, Alina , Luque, Rafael , Manuel Campelo, Juan , Angel Romero, Antonio , Manuel Ramos-Fernandez, Jose
External publication Si
Means CATALYSIS TODAY
Scope Article
Nature Científica
JCR Quartile 1
SJR Quartile 1
JCR Impact 2.98
SJR Impact 1.469
Publication date 15/11/2012
ISI 000310570300021
DOI 10.1016/j.cattod.2012.01.009
Abstract Biomass can efficiently replace petroleum in the production of fuels for the transportation sector. One effective strategy for the processing of complex biomass feedstocks involves previous conversion into simpler compounds (platform molecules) which are more easily transformed in subsequent upgrading reactions. Lactic acid and levulinic acid are two of these relevant biomass derivatives which can easily be derived from biomass sources by means of microbial and/or chemical routes. The present paper intends to cover the most relevant catalytic strategies designed today for the conversion of these molecules into advanced biofuels (e. g. higher alcohols, liquid hydrocarbon fuels) which are fully compatible with the existing hydrocarbons-based transportation infrastructure. The routes described herein involve: (i) deoxygenation reactions which are required for controlling reactivity and for increasing energy density of highly functionalized lactic and levulinic acid combined with (ii) C-C coupling reactions for increasing molecular weight of less-oxygenated reactive intermediates. (C) 2012 Elsevier B.V. All rights reserved.
Keywords Biomass; Lactic acid; Levulinic acid; Advanced biofuels; gamma-Valerolactone; Aqueous-phase processing; Ketonization
Universidad Loyola members

Change your preferences Manage cookies