Title |
Abelian subalgebras and ideals of maximal dimension in Zinbiel algebras |
Authors |
CEBALLOS GONZÁLEZ, MANUEL, Towers, David A. |
External publication |
No |
Means |
Commun. Algebra |
Scope |
Article |
Nature |
Científica |
JCR Quartile |
3 |
SJR Quartile |
2 |
JCR Impact |
0.7 |
SJR Impact |
0.642 |
Web |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140822859&doi=10.1080%2f00927872.2022.2134409&partnerID=40&md5=e225872f96528ff9fe1f46e904c778ac |
Publication date |
20/10/2022 |
ISI |
000870684200001 |
Scopus Id |
2-s2.0-85140822859 |
DOI |
10.1080/00927872.2022.2134409 |
Abstract |
In this paper, we compare the abelian subalgebras and ideals of maximal dimension for finite-dimensional Zinbiel algebras. We study Zinbiel algebras containing maximal abelian subalgebras of codimension 1 and supersolvable Zinbiel algebras in which such subalgebras have codimension 2, and we also analyze the case of filiform Zinbiel algebras. We give examples to clarify some results, including listing the values for alpha and beta for the low dimensional Zinbiel algebras over the complex field that have been classified. Communicated by Alberto Elduque |
Keywords |
Abelian ideal; abelian subalgebra; nilpotent; solvable; supersolvable; Zinbiel algebra |
Universidad Loyola members |
|