Título |
Factorization of the hypergeometric-type difference equation on non-uniform lattices: dynamical algebra |
Autores |
Alvarez-Nodarse, R , Atakishiyev, NM , COSTAS SANTOS, ROBERTO SANTIAGO |
Publicación externa |
Si |
Medio |
J. Phys. Math. Gen. |
Alcance |
Article |
Naturaleza |
Científica |
Cuartil JCR |
2 |
Impacto JCR |
1.566 |
Web |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-12144271638&doi=10.1088%2f0305-4470%2f38%2f1%2f011&partnerID=40&md5=c60e1b7e232c487d3779f785a64054ef |
Fecha de publicacion |
07/01/2005 |
ISI |
000226648800014 |
Scopus Id |
2-s2.0-12144271638 |
DOI |
10.1088/0305-4470/38/1/011 |
Abstract |
We argue that one can factorize the difference equation of hypergeometric type on non-uniform lattices in the general case. It is shown that in the most cases of q-linear spectrum of the eigenvalues, this directly leads to the dynamical symmetry algebra su(q)(1, 1), whose generators are explicitly constructed in terms of the difference operators, obtained in the process of factorization. Thus all models with the q-linear spectrum (some of them, but not all, previously considered in a number of publications) can be treated in a unified form. |
Miembros de la Universidad Loyola |
|